

EMC Test Report

Report No.: AGC05443240124EE01

PRODUCT DESIGNATION: Bamboo weather station

BRAND NAME : N/A

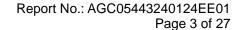
MODEL NAME : M06562

APPLICANT: MID OCEAN BRANDS B.V

DATE OF ISSUE : Feb. 03, 2024

STANDARD(S) : EN IEC 61000-6-3:2021 EN IEC 61000-6-1:2019

REPORT VERSION: V1.0


Attestation of Global Compliance (Shenzhen) Co., Ltd

Page 2 of 27

Report Revise Record

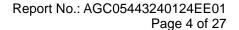

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Feb. 03, 2024	Valid	Initial release

Table of contents

1. Genera	al information	4
2. Descri	ption of Test Configuration	5
2.1.	Technical Description of Product	5
2.2.	Description of Support Equipment	5
2.3.	Description of Test Modes	5
3. Summa	ary of Measurement Results and Uncertainty	6
3.1.	Test Specifications	6
3.2.	Description of Measurement Results	6
3.3.	Description of Measurement Uncertainty	8
4. Test Fa	acility	9
5. Measu	rement of Radiated Emissions at Frequencies up to 1 GHz	10
5.1.	Requirements	10
5.2.	Block Diagram of Test Setup	10
5.3.	Equipment Details	11
5.4.	Configuration of the EUT and method of measurement	11
5.5.	Test Summary	12
6. Measu	rement of Electrostatic discharge	14
6.1.	Requirements	14
6.2.	Block Diagram of Test Setup	14
6.3.	Equipment Details	15
6.4.	Configuration of the EUT and method of measurement	15
6.5.	Test Summary	16
7. Measu	rement of Radio-Frequency Electromagnetic Field	17
7.1.	Requirements	17
7.2.	Block Diagram of Test Setup	18
7.3.	Equipment Details	19
7.4.	Configuration of the EUT and method of measurement	19
7.5.	Test Summary	20
8. Photog	graphs of Test Setup	21
9. Photog	graphs of EUT	23

1. General information

Applicant	MID OCEAN BRANDS B.V
Address	7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong
Manufacturer	MID OCEAN BRANDS B.V
Address	7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong
Factory	MID OCEAN BRANDS B.V
Address	7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong
Product Designation	Bamboo weather station
Brand Name	N/A
Test Model	MO6562
Series Model(s)	N/A
Difference Description	N/A
Deviation from Standard	No any deviation from the test method
Date of receipt of test item	Jan. 29, 2024
Date of Test	Jan. 29, 2024 to Feb. 03, 2024
Test Result	Pass
Test Report Form No	AGCER-EMC-GEN-V1
Note: The test results of the	is report relate only to the tested sample identified in this report.

Prepared By	Jack Gai	
	Jack Gui (Project Engineer)	Feb. 03, 2024
Reviewed By	Calin Lin	
	Calvin Liu (Reviewer)	Feb. 03, 2024
Approved By	Max Zhang	
	Max Zhang (Authorized Officer)	Feb. 03, 2024

Page 5 of 27

2. Description of Test Configuration

2.1. Technical Description of Product

Test arrangements of EUT	Table-top
Hardware Version	N/A
Software Version	N/A
Highest Internal Frequency	Less than 108MHz
EUT Input Rating	DC 3V

Connection Diagram of Host System

EUT

I/O Port Information (☐Applicable ☐Not Applicable)

Port Type	Input/Outp	ut Number	Cable Description

2.2. Description of Support Equipment

Device Type	Manufacturer	Model Name	Serial No.	Data Cable	Power Cable

2.3. Description of Test Modes

No.	Test Mode Description	Worst
1	Normal operation mode	

Page 6 of 27

3. Summary of Measurement Results and Uncertainty

3.1. Test Specifications

EN IEC 61000-6-3:2021	Electromagnetic compatibility (EMC) - Part 6-3: Generic standards – Emission standard for equipment in residential environments
EN IEC 61000-6-1:2019	Electromagnetic compatibility (EMC) - Part 6-1: Generic standards – Immunity standard for residential, commercial and light-industrial environments

3.2. Description of Measurement Results

Test items	Test Standard(s)	Verdict
Radiated emissions at frequencies up to 1 GHz	EN IEC 61000-6-3	Pass
Electrostatic discharge	IEC 61000-4-2 a	Pass
Radio-frequency electromagnetic field	IEC 61000-4-3 a	Pass

Note:

a. The applicable versions of the basic standards are defined in the standard which listed in the test specification.

Page 7 of 27

Performance table

	Performance Criteria for Immunity
Performance criterion A	The EUT shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the EUT is used as intended. If the performance level is not specified by the manufacturer, this may be derived from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.
Performance criterion B	The EUT shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. However, during the test degradation of performance is allowed but no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.
Performance criterion C	Temporary loss of function is allowed during the test, provided the function is self-recoverable or can be restored by the operation of the controls.

Page 8 of 27

3.3. Description of Measurement Uncertainty

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Conducted emissions from the AC mains power ports	Uc = ±2.9 dB
Radiated emissions at frequencies up to 1 GHz	Uc = ±3.9 dB
Radiated emissions at frequencies above 1 GHz	Uc = ±4.9 dB

Report No.: AGC05443240124EE01 Page 9 of 27

4. Test Facility

Laboratory name: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Laboratory Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. is accredited in accordance with the recognized International Standard ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laborat ories (CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the Electrical field.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842

CAB identifier: CN0063

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

VCCI Membership No.: 4112

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered in accordance with VCCI Council Rules.

VCCI Registration No. C-20098 for conducted emissions at AC main power ports

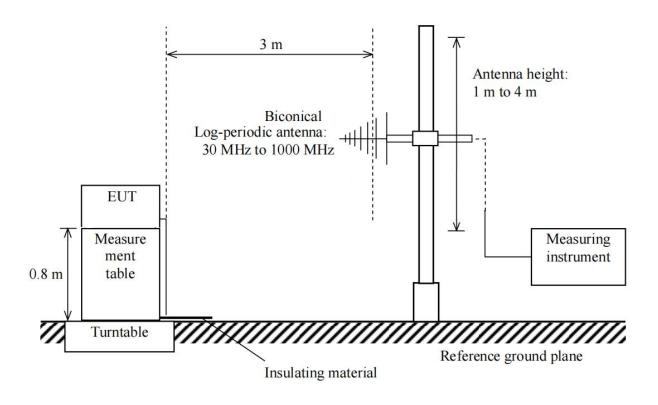
VCCI Registration No. T-20102 for conducted emissions at telecommunication ports

VCCI Registration No. R-20136 for radiated emissions below 1GHz

VCCI Registration No. G-20132 for radiated emissions above 1GHz

Page 10 of 27

5. Measurement of Radiated Emissions at Frequencies up to 1 GHz


5.1. Requirements

Requirements for radiated emissions at frequencies up to 1 GHz at 3m distance

Test facility	Detector type/ bandwidth	Frequency Range (MHz)	Limits dB(µV/m)	Measurement specifications
SAC Quasi-peak/ 120kHz		30 to 230	40	Instrumentation: CISPR 16-1-1, Clauses 4, 5 Antennas: CISPR 16-1-4, Clause 4.5
		230 to 1000	47	Test Site: CISPR 16-1-4, Clause 6 Method: CISPR 16-2-3, Clause 7.6

Note:

5.2. Block Diagram of Test Setup

^{1.} The lower limit shall apply at the transition frequency.

Page 11 of 27

5.3. Equipment Details

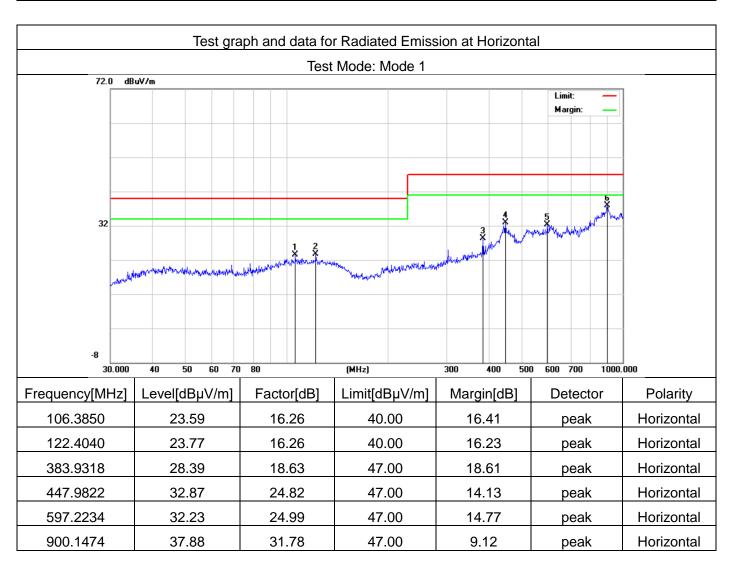
Measuring Instruments

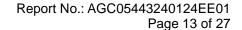
Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Test Receiver	R&S	ESCI	10096	Feb. 18, 2023	Feb. 17, 2024
Antenna	SCHWARZBECK	VULB9168	D69250	May 11, 2023	May 10, 2025
Attenuator	East sheep	LM-XX-6-5W	N/A	Jun. 09, 2023	Jun. 08, 2024

Measuring Software

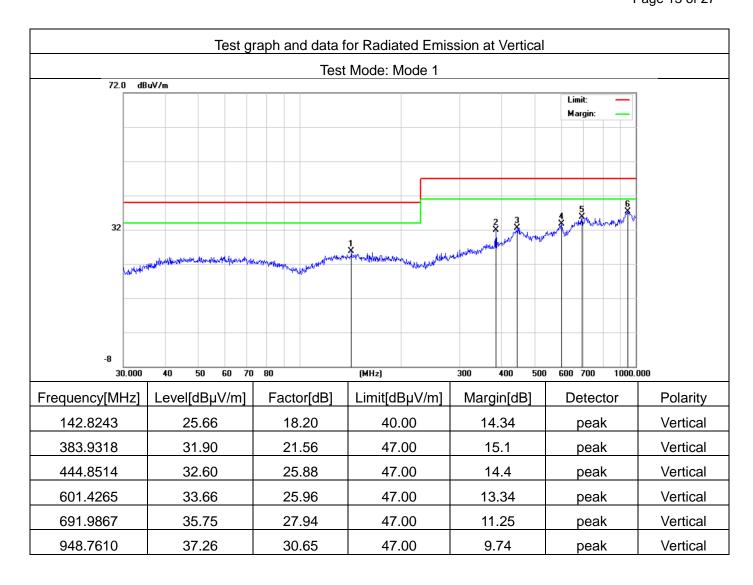
Software Name	Manufacturer	Details	
EZ-EMC	FARA	For EMC Measurement, Version RA-03A	

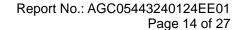
5.4. Configuration of the EUT and method of measurement

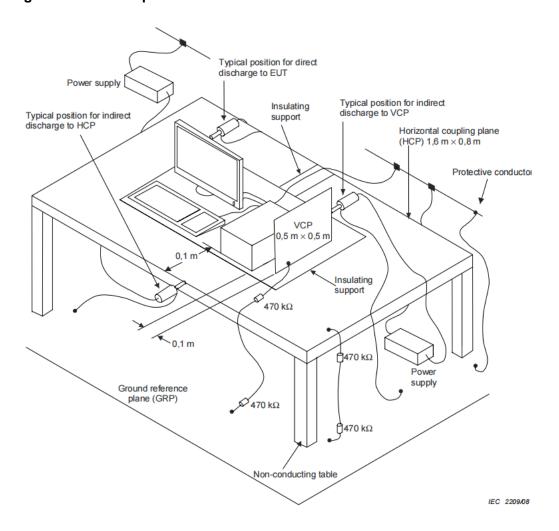

- a. The EUT was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, the EUT was placed on the top surface of a measurement table, 0.8 m high from the horizontal reference plane. When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 10 cm non-conductive covering to insulate the EUT from the ground plane.
- b. Support equipment, if needed, was placed as per CISPR 16-2-3.
- c. All I/O cables were positioned to simulate typical actual usage as per CISPR 16-2-3.
- d. The maximum receiving level of radiated emissions from the EUT was measured while the turntable was rotated from 0° to 360° and the antenna height was scanned between 1 m and 4 m. The cables were laid out to attain the maximum level of radiated emissions.
- e. The more description of the tests, the test methods, and the test set-ups are given in the applicable test standard.
- f. Record at least six highest emissions relative to the limits at each frequency of interest unless the emission is 10 dB or greater below the limit.
- g. A radiated emission is calculated by the following equation:
 - Measurement Level dB(μV/m) = Receiver reading dB(μV) + Factor(dB/m)
 - Factor(dB/m) = Antenna Factor(dB/m) + Cable Loss(dB)
 - Margin= Limit-Level



Report No.: AGC05443240124EE01 Page 12 of 27


5.5. Test Summary


Test Engineer	Linke	Temperature	22.8 ℃
Test Date	Feb. 01, 2024	Air Pressure	985 Mbar
Worst Mode	Mode 1	Relative Humidity	59.4 %
Verdict	Pass		



6. Measurement of Electrostatic discharge

6.1. Requirements

Port	Enclosure
Basic Standard	IEC 61000-4-2
Test Level	±8.0 kV (Air Discharge) ±4.0 kV (Contact Discharge) ±4.0 kV (Indirect Discharge)
Required Performance Criterion	B
Time Between Each Discharge:	1 second
Number of Discharge for Each Applied Voltage	10

6.2. Block Diagram of Test Setup

Report No.: AGC05443240124EE01 Page 15 of 27

6.3. Equipment Details

Measuring Instruments

Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
ESD Simulator	Schaffner	NSG 438	782	Nov. 13, 2023	Nov. 12, 2024

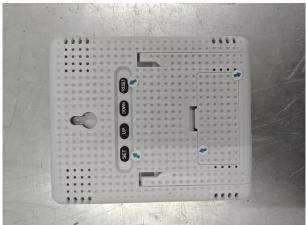
Measuring Software

Software Name	Manufacturer	Details
		

6.4. Configuration of the EUT and method of measurement

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were completed.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned vertically at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m×0.5m) was placed vertically to and 0.1 meters from the EUT.
- The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance criterion defined in the report.

Report No.: AGC05443240124EE01 Page 16 of 27


6.5. Test Summary

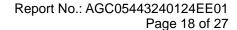
Test Engineer	Sam	Temperature	21.7 ℃
Test Date	Feb. 02, 2024	Air Pressure	985 Mbar
Test Mode(s)	Mode 1	Relative Humidity	55.9 %
Verdict	Pass		

Voltage	Coupling	Observation	Performance
±4kV	Contact Discharge	N/A	N/A
±2KV, ±4kV, ±8kV	Air Discharge	No degradation of performance	А
±4kV Indirect Discharge HCP		No degradation of performance	А
±4kV	Indirect Discharge VCP	No degradation of performance	А

Blue line: Air discharge

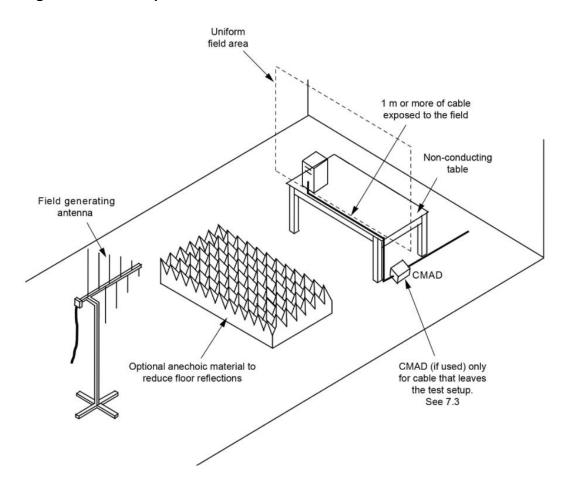
Note: Contact discharge point not found.

Page 17 of 27


7. Measurement of Radio-Frequency Electromagnetic Field

7.1. Requirements

Port	Enclosure
Basic Standard	IEC 61000-4-3
Required Performance Criterion	A
Test Level	3V/m with 80% AM. 1kHz Modulation at 80 to 1000MHz 3V/m with 80% AM. 1kHz Modulation at 1400 to 6000MHz
Antenna polarization	Vertical and Horizontal
Step size increment ^a	1%
Dwell time ^b	≤5 seconds
Test Distance	3m
EUT position facing antenna	Front side, back side, left side and right side


Notes:

- a. Recognizing that a 1% step size is preferred, the frequency range can be swept incrementally with a step size not exceeding 4% of the previous frequency with a test level of twice the value of the specified test level in order to reduce the testing time for equipment requiring testing in multiple configurations and/or long cycle times.
- b. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time shall not exceed 5 seconds at each of the frequencies during the scan. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

7.2. Block Diagram of Test Setup

Report No.: AGC05443240124EE01 Page 19 of 27

7.3. Equipment Details

Measuring Instruments

Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Signal Generator	Aglient	N5182A	MY50140530	Feb.17, 2023	Feb.16, 2024
Power Probe	R&S	URV5-Z4	100124	Mar. 24, 2023	Mar. 23, 2025
Power Meter	R&S	NRVD	8323781027	Mar. 24, 2023	Mar. 23, 2025
Directional coupler	Werlatone	C5571-10	99463	Mar. 10, 2022	Mar. 09, 2024
Directional coupler	Werlatone	C5571-10	99482	Mar. 10, 2022	Mar. 09, 2024
Power Amplifier	KALMUS	7100LC	04-02/17-06-001	Apr. 25, 2023	Apr. 24, 2024
Power Amplifier	Milmega	AS0104-55_55	1004793	Apr. 25, 2023	Apr. 24, 2024
Power Amplifier	Rflight	NTWPA-2560100	17063183	Apr. 25, 2023	Apr. 24, 2024
Wideband Antenna	ETS	3142C	00060447		
Broadband high gain horn antenna	SCHWARZBECK	BBHA 9120 J	00073		

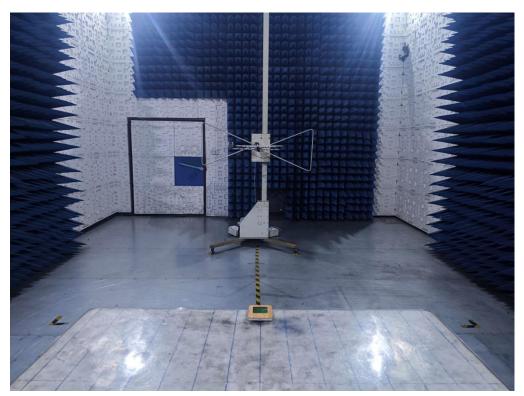
Measuring Software

Software Name	Manufacturer	Details	
TS+[JS35-RS]	Tonscend	For EMC measurement, version 2.0.1.8	

7.4. Configuration of the EUT and method of measurement

- a. The Equipment Under Test (EUT) was positioned within the Uniform Field Area (UFA) on a supporting table, ensuring a 3-meter separation from the transmitting antenna. This setup aligns with the calibrated square area, guaranteeing field uniformity during testing. The supporting units were strategically located outside the UFA to avoid any potential interference. Nonetheless, the cables connected to the EUT were intentionally exposed to the precisely calibrated field within the UFA.
- b. Before testing, it will verify the proper operation of the test equipment/system. This verification will involve measuring the field strength at one point within the Uniform Field Area (UFA) at various frequencies.
- The test shall be performed according to the above requirements and block diagram which shall specify the test setup.
- d. The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance criterion defined in the report.

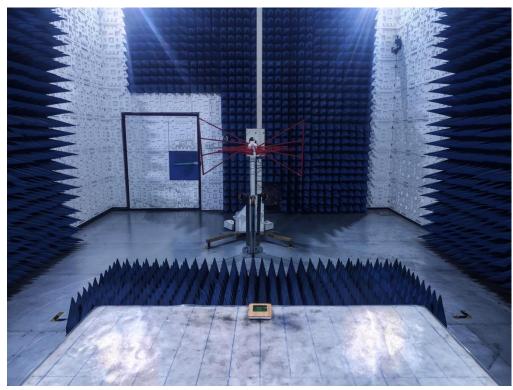
Report No.: AGC05443240124EE01 Page 20 of 27


7.5. Test Summary

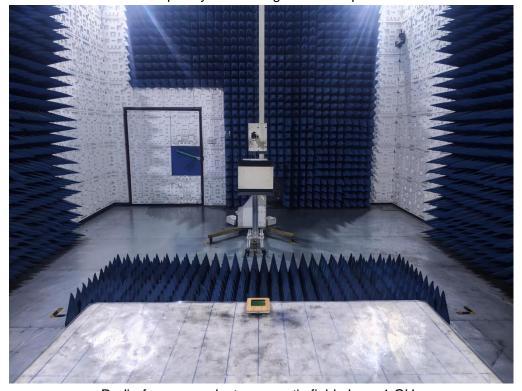
Test Engineer	Linke	Temperature	23.8 ℃
Test Date	Feb. 01, 2024	Air Pressure	985 Mbar
Test Mode(s)	Mode 1	Relative Humidity	58.5 %
Verdict	Pass		

Frequency	Exposed Side	Field Strength (V/m)	Observation	Performance
80MHz to 1GHz	Front	3V/m (rms)	No degradation of performance	А
	Left		No degradation of performance	А
	Rear		No degradation of performance	А
	Right		No degradation of performance	А
1.4GHz to 6GHz	Front	3V/m (rms)	No degradation of performance	А
	Left		No degradation of performance	А
	Rear		No degradation of performance	А
	Right		No degradation of performance	А

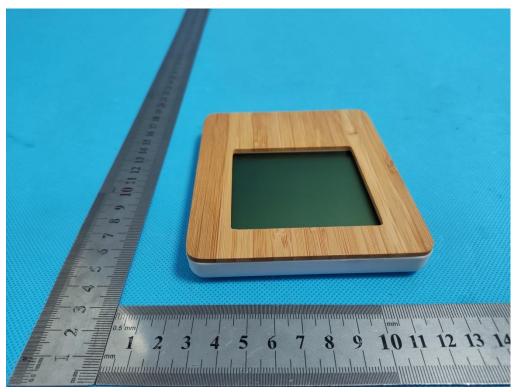
8. Photographs of Test Setup

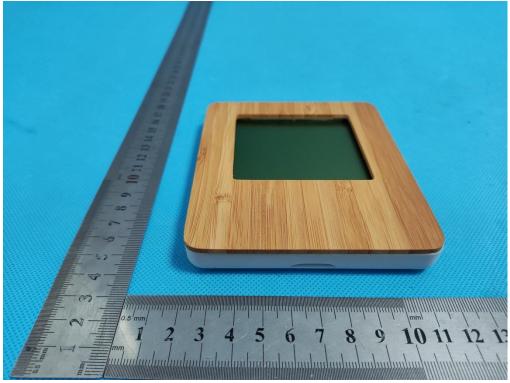


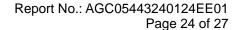
Radiated emissions at frequencies up to 1 GHz



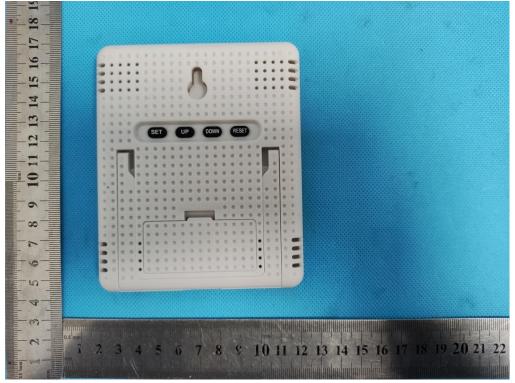
Electrostatic discharge

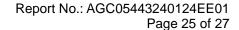

Radio-frequency electromagnetic field up to 1 GHz

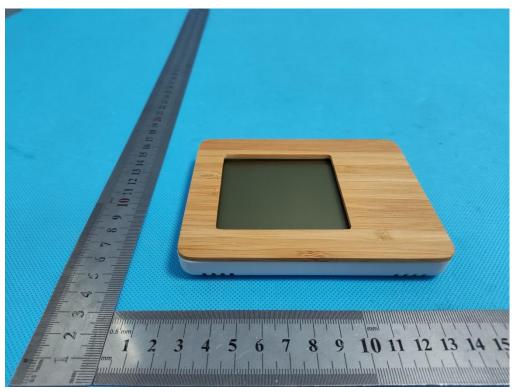

Radio-frequency electromagnetic field above 1 GHz

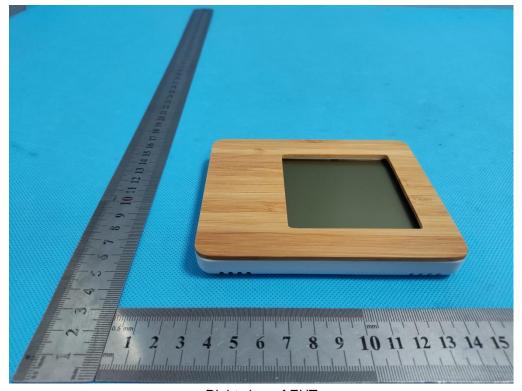

9. Photographs of EUT

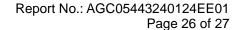
Top view of EUT


Bottom view of EUT

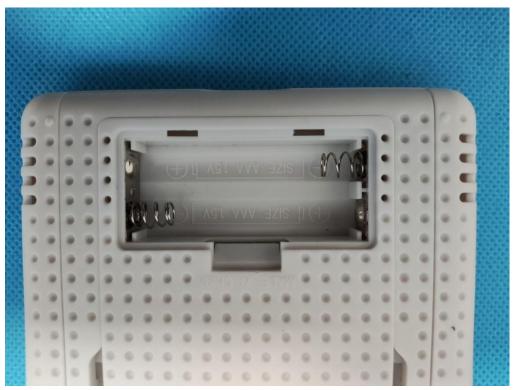



Front view of EUT

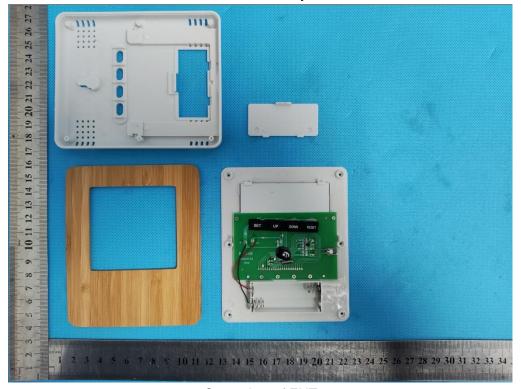

Back view of EUT

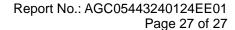


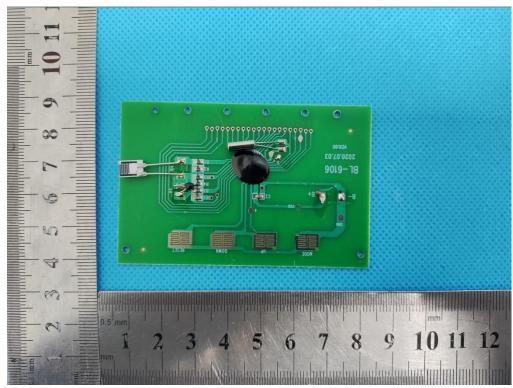
Left view of EUT

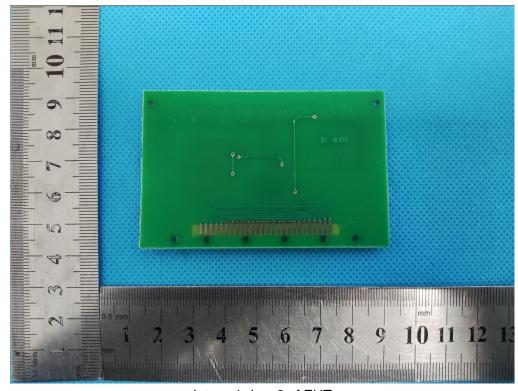


Right view of EUT


Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/




View of Battery


Open view of EUT

Internal view-1 of EUT

Internal view-2 of EUT

----End of Report----